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Statistical properties of water waves. Part 1. Steady-state 
distribution of wind-driven gravity-capillary waves 

By BRUCE J. WEST 
Center for StGdies of Nonlinear Dynamics, La Jolle Institute, 

P.O. Box 1434, La Jolla, CA 92038, U.S.A. 

(Received 19 May 1980 and in revised form 27 July 1981) 

The Miles-Phillips model of the linear coupling between waves on the ocean surface 
and a fluctuating wind field is generalized to include the average effect of the nonlinear 
water-wave interactions in the dynamic equations for gravity-capillary waves. A 
statistical-linearization procedure is applied to the general problem and yields the 
optimum linear description of the nonlinear terms by linear terms. The linearized 
dynamic equations are stochastic with solutions that have stable moments, i.e. the 
average nonlinear interactions quench the linear instability generated by the coupling 
to the mean wind field. In particular, an asymptotic steady-state power-spectral 
density for the water-wave field is calculated exactly in the context of the model for 
various wind speeds. 

1. Introduction 
The excitation of wave motion on the surface of a fluid by turbulent air flow over 

the surface is a long-standing problem in hydrodynamics. The physical mechanisms 
coupling the air and water must be understood in order to describe the evolution of 
the wind-generated spectrum of water waves on the ocean surface. Phillips (1957) 
proposed a stochastic model of the excitation mechanism in which the pressure field 
at  the fluid surface is aesumed to fluctuate independently of the surface response. 
These incoherent fluctuations drive the surface at  length and time scales already 
extant in the pressure field spectrum. Miles (1957) proposed a deterministic mechanism 
involving the modulation of the air flow by the vertical movement of the surface, 
resulting in the pressure field doing work on the surface in-phaee with the surface 
response. These complementary mechanisms were later synthesized by Miles (1960) into 
the Miles-Phillips model of inviscid resonant shear-flow instability. West & Seshadri 
(1981) have recently extended this model by allowing the linear &-sea coupling 
parameter to fluctuate. The growth rates for long-wavelength gravity waves predicted 
by the model of West & Seshadri exceed those predicted by the Miles-Phillips model 
by an order of magnitude for some wavelengths, in close agreement with field data. 

In these linear-growth models the energy influx from the air flow stimulates an 
exponential growth of the water-wave amplitudes. In  this paper we report on a dyna- 
mic model of the air-sea interaction which yields asymptotically a steady-state dis- 
tribution of gravity-capillary waves. The nonlinear interactions among the waves 
are included in an ‘optimum’ linear equation and are shown to quench the wind- 
generated instabilities. The experiments of Plant & Wright (1977) indicate that 10 cm 
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waves are probably the longest waves which grow by the direct influx of energy from 
the air flow, so these are the waves with which we will be concerned. The analysis is 
therefore restricted to fetches sufficiently long that the high-frequency water waves 
have time to reach their steady-state level, but short enough that the long-wavelength 
gravity waves have not yet attained appreciable amplitude. 

No dynamic theory has been previously worked out which describes the evolution 
of the water surface driven by a fluctuating wind field from a state of rest to an 
asymptotic steady state. The dynamic models of Miles (1957, 1960), Phillips (1957) 
and West & Seshadri (1981) provide a description of the initial stages of wind- 
stimulated growth of water waves. In the gravity-capillary region of the spect’rum 
the Miles-Phillips model does quite well in predicting the initial growth rates and is 
equivalent to the model of West & Seshadri. However, these models do not yield an 
asymptotic steady-state energy-spectral density. The steady state observed in the 
data is presumed to be a consequence of the nonlinear interactions among the water 
waves, see e.g., Kitaigorodskii (1973) or Phillips (1977) for a qualitative discussion 
of this effect. Herein we obtain a solution to the dynamic equations including the 
average effect of the nonlinear interaction and do indeed obtain such a steady-state 
energy-spectral density for the wind-wave field. 

Van Dorn (1953) observed experimentally that there is a significant reduction of 
the momentum flux to the surface-wave field from the wind in the absence of short 
waves. Dobson (1971), in his measurements of the pressure perturbations induced in 
the air flow by low-frequency water waves, determined experimentally that a large 
fraction of the momentum flux from the air to the sea goes initially into the water- 
wave field rather than into a surface-drift current. Further, he observed that the 
rates of growth of these long waves exceeds those predicted by Miles’ (1957) inviscid 
laminar theory of wave instability by a factor of between 5 and 8. Dobson resolved 
an apparent inconsistency between his data and those of Van Dorn by conjecturing 
that the high-frequency short waves act as a catalyst to the ‘low-frequency’ growth 
mechanism. We do not test that conjecture here, but we do assume that the dynamics 
of the short surface waves are very different from those of the long waves. We mention 
this mechanism here only because it is a process by which energy can be extracted 
from the high-frequency region of the spectrum, and it is not included in the present 
model. We determine that this mechanism may possibly explain an inconsistency 
noted between the calculated and experimental shape of the energy spectral density 
as a function of frequency. 

We adopt the linear air-sea coupling models of Miles (1957,1960) and Phillips (1957) 
to describe the initial growth of the high-frequency waves. The mean shear-flow 
instability in the air and the turbulent eddies in the wind field act in concert to generate 
the fluctuating water-wave field in this model. In  addition to these two growth 
mechanisms, we include in the equations of motion viscous damping and the non- 
linear interaction of the gravity-capillary waves among themselves. In  5 2 we describe 
the dynamics by a system of nonlinear-mode-rate equations driven by a fluctuating 
inhomogeneity. In $ 3  this system of nonlinear stochastic differential equations is re- 
placed by a system of linear stochastic differential equations using the method of sta- 
tistical linearization. The resulting linear system is a simple Langevin equation for 
the water-wave field for which a corresponding Fokker-Planck equation is constructed. 
These equations can be solved exactly, and yield a steady-state spectrum of gravity- 
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capillary waves in terms of the wind power spectral density and a renormalized 
Gaussian distribution for the water-wave statistics. In  $ 4 the statistical-linearization 
approximation is applied to a model nonlinear system to provide an interpretation of 
the technique in terms of renormalized perturbation theory. In  $ 5 we construct and 
solve formally the transport equation for the energy-spectral density of the gravity- 
capillary waves. In  $ 6  we calculate numerically the steady-state spectral density and 
relaxation rate of the high-frequency waves, which are seen to compare favourably 
with experiment. 

2. Dynamic equation 
In  this paper we describe the fluid velocity v(x, z, t) by means of a velocity potential 

#(x, z, t )  located by the horizontal co-ordinate x = (z, y) and vertical displacement x .  
For a fluid with a pressure distribution p(x,  z, t) acting on the free surface z = C(x, t), 
the equations of motion are given by (see e.g. Landau & Lifshitz 1959) 

defined on z = C(x, t ) .  In  (2.1) y is the kinematic surface tension, v is the coefficient of 
kinematic viscosity, V, is the horizontal gradient operation (a/ax, a/ay), and the 
constant fluid density is pw. In  this model of the fluid motion we neglect the rotational 
component of the fluid velocity that is generated by the viscous damping, i.e. the 
vorticity, and assume that the dominant characteristics of the surface motion can be 
described by irrotational flow alone. Finally, we assume that the fluid depth is much 
greater than the length scales of the surface motion, and that the surface is large in 
lateral extent. These latter two assumptions allow us to ignore the effects of the fixed 
boundaries on the motion of the surface and to separate completely the motion of the 
surface from that in the fluid interior. 

Watson & West (1975) introduce the velocity potential at the surface by 

q5s(x, t) = +(x, z, t) at = C@, t ) ,  (2.2) 

and represent the flow field in terms of wave modes by expanding both the velocity 
potential and the surface displacement in finite Fourier series: 

~ ( X Y  t) = I: &(t) eik*’, (2.3) 

$S(X, t) = &(t) eik ’ (2.4) 

k 

k 

The Fourier amplitudes C k ( t )  and + k ( t )  are identified with the time-dependent ampli- 
tudes of surface-wave modes of wave vector k defined on a rectangular area of ocean 
Zo (with periodic boundary conditions). The Fourier exponentials satisfy the relations 

-!- /d2z@.X = ak,o, - eik-.: = 8 ( x 1, (2.5a, b )  
z0 zo k 

where 8k.o is the Kronecker delta and &(x) the Dirac delta function on the two- 
dimensional quiescent ocean surface. 

1 
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The coupling of the sea surface to the turbulent wind field in the Phillips-Miles 
model consists of the incoherent pressure fluctuationsp,(x, t )  and the in-phase pressure 
variations 

(2.6) P l ( X 2  t )  = 2P,Pu,K',g (x, t ) ,  

P ( X ,  t )  = Po@, t )  +PI(% 4. 

yielding the total-pressure field 

(2.7) 

The operator V, weights each surface wave mode with the phase velocity of a small- 
amplitude gravity-capillary wave V, = (g/k + yk)i. The operator ,uK represents the 
fractional increase in the surface energy per radian. When applied to the Fourier 
transform of the surface field variable ,ux yields the k-dependent quantity determined 
by Miles (1960). 

In appendix A we express the equations of motion (2.1) in terms of quantities 
defined on the free surface. Using these expressions, we rewrite (2.1) in terms of the 
Fourier-mode amplitude as 

( 2 . 8 ~ )  

(2.8b) 

where the fluctuating air pressure at  the free surface is given by the Fourier-series 
expansion 

a 
-ck-k#k at = Fg(k), 

po(x,t) = E$@)eik*', 
k 

and$)&) = p l i k ( t )  since the pressure is a real quantity. Here wk is the angular frequency 
(gk + yk3) and the functions F$(k, t) and F&k, t) are defined by the Fourier transforms 
of the nonlinear terms in (A 15a) and (A 15b), respectively. Note that the originally 
linear models of viscous dissipation and in-phase coupling to the mean air flow give 
rise to nonlinear terms at the free surface, i.e. nonlinear terms involving vk2 and ,uk 
in the functions F+ and Fg. 

The nonlinear terms in (2.8) are treated here in a mode-coupled representation. To 
transform (2.8) to a system of normal-mode equations we diagonalize the deter- 
ministic linear part, i.e. omit f i ( t ) ,  F$(k) and Fg(k) from (2.8), and write the truncated 
equations in matrix form: 

Equation (2.9) can be diagonalized to yield 

where A, is the eigenvalue given by 

hk = Uka -/&kWk + iw,(k), 

o,(k) = [WE - (Vk2 -ykwk)2]t. with 

(2.10) 

(2.11) 

(2.12) 
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Here w,(k) is the linear frequency shifted by the effect of viscous dissipation vka and 
the coupling to the air flow ,ukwk. The linear-eigenmode amplitudes in (2.10) are 
obtained from the transformation 

(2.13) 

where the linear eigenvalues are used to defhe the ‘ complex velocity ’ v k ,  i.e. 

v k  -i&/k, (2.14) 

which in the absence of wind (,%k = 0 )  and viscosity (v = 0 )  reduces to the ordinary 
phase velocity V, = (g/k +yk)) of a small-amplitude linear water wave. 

By applying the transformation (2.13) to the system of nonlinear equations (2.8), 
we obtain the mode-rate equations 

Bk(t) =.fdt) + %(B). (2.15) 

The function %( B) is the sum of the quadratic nonlinear wave-wave interactions 

and the cubic nonlinear interactions 

Tf)(B) = 8k+a-1-m{cl,,B1BmBa + %BlB,B,* + @““BlBzB,* + Cll.l.B:BzB,*). 
1, m, a (2.17) 

The coupling coefficients in the quadratic terms are complex owing to the depen- 
dence on the coefficient of viscoeity and the air-sea coupling parameter, and therefore 
differ from those obtained in other studies; see e.g. Valenzuela & Laing (1972) or 
Holliday (1977). The coefficients in (2.16) and (2.17) are recorded in appendix B. 
Only the coupling coefficient @from the cubic terms in (2.17) is listed in appendix B, 
since this term is found subsequeatly to have the dominant effect on the equilibration 
of the gravity-capillary waves. The function fk( t )  models the turbulent eddies in the 
wind field and is a fluctuating function of time, i.e. 

(2.18) 

where &(t) is the Fourier transform of the stochastic component of the pressure field 
at the ocean surface. 

The expression (2.15) is therefore a differential equation not unlike those that arise 
in the study of turbulence; see e.g. Leslie (1973) for a review of such models. The 
formal similarity of (2.16) to expressions that have been studied, for example, by 
Kraichnan (1975), suggests that this wave field has a number of properties in common 
with those of turbulent fluid flow. The scaling argument used by Kitaigorodskii (1962) 
and also by Phillips (1977) are based in part on such an analogy. This correspondence 
cannot be pushed too far, however, because of the existence of a dispersion relation 
for the water waves, which L not present in turbulent flows. In  addition there is the 
restriction that the dominant nonlinear interaction among gravity-capillary waves 
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arises from resonant trkd8 of waves (see e.g. Phillips 1960; Benney 1962; Longuet- 
Higgins 1962), satisfying the conditions on wave vectors and frequencies: 

k = l+m, w k  = W l + W , .  (2.19) 

In  the following sections we examine the physical properties of an approximate solu- 
tion to (2.15), subject to the restriction (2.19) on the nonlinear interactions. 

The properties of the solution to the stochastic equation (2.15) can only be obtained 
when the statistics of the fluctuating force (2.18) are specified. The statistical properties 
of the solution are determined by averaging powers of the mode amplitudes over the 
fluctuations in the wind field. To define this average we ignore processes such EM the 
generation of a mean drift current at  the fluid surface (see e.g. Banner t Phillips 
1974) and assume that the average energy influx from the wind is adequately modelled 
by the in-phase air-sea coupling term (2.6). This enables us to treat the turbulent 
fluctuation in the wind field as zero-centred, since the mean effect is included in (2.6). 
As mentioned previously, in the field measurements of low-frequency waves by Dobson 
(1971) it was observed that most of the momentum flux goes directly into the surface- 
wave field, so that this assumption is not unreasonable. 

The solution to (2.15) is different for each realization of the air flowfk(t). To deter- 
mine the statistics of the solution we use a standard procedure from statistical mecha- 
nics and collect a large number of reahations of fk(t) into an ensemble. It is then 
customary in obtaining average properties to replace all time averages by averages 
over the ensemble of realizations of f&). Such an average we denote by a bracket 
with a f subscript. The fist statistical property of the atmosphere at the air-sea inter- 
face is therefore given by 

( 2 . 2 0 ~ )  

For the second-order statistics of f(t), noticing that the pressure field may he correlated 
over time intervals longer than the characteristic time scales of the high-frequency 
surface-wave spectrum, using (2.18) we write 

Assuming a spatially homogeneous and temporally stationary pressure field, we 
obtain 

(2.20b) 

The strength of the correlations in the air flow on the scale 2?r/k over a time interval 
T is given by @(k,T). The time Fourier transform of the correlation function, i.e. 
6(k,  w ) ,  is the three-dimensional space-time power-spectral density of the pressure 
field. Because the complex function fk(t)  is proportional to the Fourier transform of 
a real stochastic function, i.e. p k ( t )  = p?k(t), we also have 

(2.20c) 

In  addition we assume that all higher cumulants of pk(t) vanish. These Statistical 
properties of the surface-pressure field specify that fk(t) is a zero-centred, homogeneous, 
stationary Gaussian random process with power-spectral density 6(k, w )  and a complex 
coefficient. 

Given these Statistical properties of fk(t), the analytic solution to (2.15) is still 



Statistical properties of water waves. Part 1 193 

beyond our gmap .because of the nonlinear interaction function T k  in the equation of 
motion. We therefore turn to an approximation scheme called statistical linearization, 
which has been developed in the engineering community (see e.g. Caughey 1963; 
Crandall 1973). 

3. Statistical linearization 
The technical difficulties aseociated with the mathematical and phyaical analysis 

of nonlinear stochastic differential equations such as (2.15) are well known from studies 
in turbulence (Leslie 1973), analytical dynamics (Ford 1961; Chirikov 1978; Tabor 
1981), statistical mechanics (Zwwig 1972; Kawmki  1970) and many other areaa 
of physics and applied mathematics (see e.g. Lax 1966; Van Kampen 1976). To circum- 
vent these difficulties we intend to replace the nonlinear system of gravity-capillary 
waves by an optimum lineax system in which-the nonlinearities enter through a self- 
consistent renormalization of the frequency and growth rate. The approximation 
techniques, unlike ordinary perturbation theory, which is valid at early times, are 
valid at late times. This asymptotic technique involves replacing the nonlinear function 
Tk(B) with a 'statistically equivalent' function no higher than linear in the mode 
amplitude &(t). The method is referred to aa statistical linearization and has been 
favourably compared with high-order perturbation theories by West, Lindenberg & 
Shuler (1978) and also by Budgor & West (1978). The method reproduces the steady- 
state average of B,(t) and yields a self-consistent expression for the steady-state 
moments. Although the first two moments are certainly an inadequate description 
of the distribution function for the system (unless it just happens to be Gaussian), 
they can provide a good estimate of the steady-state second-order statistics, i.e. 
variances, correlation functions and spectral densities (see e.g. Budgor, Lindenberg t 
Shuler (1976), and for an extension to systems with many degrees of freedom see West 
et al. (1978)). These are precisely the properties which interest us here, so the approxi- 
mation is felt to be adequate. 

The prescription we use in this approximation is to replace the nonlinear function 
Tk(B) by a term no higher than linear in &(t), i.e. 

Tk(B) -+ bk +hBdt), (3.1) 

where p k  and h are complex parameters selected so that the mean-square error c: 
due to this replacement, 

is a minimum. The initial conditions in (3.2) have been shifted to t = -m. The error- 
minimization condition is contained in the expressions for the independent variations 
of ei with respect to & and a, i.e. 

(3.3) 

(3.4) 
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The quantity & ( E Bk - (&)T) is the fluctuating component of the mode amplitude 
away from its time-averaged value, where the time average is indicated by the T 
subscript on the averaging brackets. 

The evaluation of the parameter sets {pk} and {by) requires a knowledge of the time- 
dependent solution of (2.15) in order to perform the indicated time averages in (3.4) 
and (3.5). The motivation for introducing this approximation procedure, however, is 
precisely that we do not know how to obtain an exact solution to (2.15). To skirt this 
problem in the calculation of p k  and b, it is necessary to replace these time averages 
by a ~teady-state ensemble average, i.e. an average over an ensemble distribution that 
is valid at late time. This is a valid procedure if the system is ergodic. To obtain the 
steady-state distribution of the gravity-capillary wave field we solve the equation of 
evolution for the probability density in the phase space of the water-wave system. 
This equation of evolution when the f luxfk(t)  is a Gaussian, delta-correlated process 
is a Fokker-Planck equation. The Fokker-Planck equation for the linearized gravity- 
capillary wave field can be solved exactly to obtain the steady-state distribution 
function with a parametric dependence on the quantities given by (3.4) and (3.5). 
Replacing the time averages by steady-state ensemble averages in these relations 
establishes a self-consistency requirement on the parameters h and a,. 

Using (3.1) in (2.15) we obtain the linearized equatiops of motion 

where the complex coefficient a(k) = aR(k) + iaI(k) consists of the shifted frequency 

a m  3 9[a(k)I = q ( k )  -.f[bI, (3.7) 

and shifted ‘growth parameter’ 

The first important property of (3.6) is that it preserves the evolution of the average 
mode amplitude. Taking the steady-state ensemble average of (3.6) and using the 
ergodic theorem to obtain the new definitions of 16, and b, 

it is immediately shown that 

(3.11) 

which can be,obtained directly from (2.15) by averaging over the steady-state distri- 
bution. The steady-state average in (3.9) and (3.10), or correspondingly the T + CCI 

limit in (3.4) and ( 3 4 ,  implies that the variational parameters and a are only 
valid in the asymptotic region. This is precisely the region where the gravity-capillary 
waves have received sufficient energy from the wind to make the nonlinear terms in 
Tk(B) non-negligible. 
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Using the definition of b k  given in (3.10) and the average equation (3.11), we can 
rewrite the linear equation of motion (3.6) in terms of the variation of the mode 
amplitude from its steady state value 

&t) &(t) - (Bk(t))BS, (3.12) 

as (3.13) 

Equation (3.13) is a linear Langevin equation for the complex mode amplitude 
&t), and includes all the dominant effects in our model of the gravity-capillary wave 
field. Through A, this equation includes viscous dissipation and the resonant influx 
of energy from the mean wind field; through f k ( t )  it includes the incoherent influx of 
energy from the fluctuations in the air flow, and finally through the parameter hk it 
includes the average nonlinear interactions among the waves at  late times. The 
construction of the linear equation (3.13) has been deceptively easy and it is important 
to understand the physical content of the variational procedure (3.3) in order to 
appreciate the degree of validity of this approximation technique. We examine this 
interpretation in Q 4. 

Before we concentrate on the interpretation of the above result we note that all 
physical quantities are related to an average over the steady-state distribution 
function; a quantity we do not yet have. However, the h a 1  equation of evolution is 
a linear Langevin equation, so that we can construct the steady-state distribution 
function by solving the phase-space equation of evolution for the probability 

P(b, t I b,) 

that the dynamiz variables &(t)  has a value in the interval (b, b + db) at time t given 
an initial value B(t = 0) = b,. Here dr(b) is a differential volume element in the 2N- 
dimensional phase space for the system of N gravity-capillary waves. Using (3.13), 
we define the operators Lo and L,(t) such that if G(b) is an arbitrary phase-space 
function, then 

( 3 . 1 4 ~ )  
a 

LoG(b) x- [a(k) bkG(b)] + C.C. 
k abk 

a 
Lf(t)  G(b) - - [ f k ( t )  G(b)] + C.C. . 

k abk 
(3.14 b)  

It has been shown by a number of investigators (e.g. Van Kampen 1976; Mukamel, 
Oppenheim & Ross 1978; West et al. 1979) that Whenfk(t) has zero-centred Gaussian 
statistics, the exact equation of evolution for P(b,  t I b,) is given by 

Introducing the derivative operator in the interaction representation 

(3.16) 
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(see e.g. Lax 1966; West et al. (1979), and using the second-order statistics off&) 
given by (2.20), (3.15) amumes the form 

Factoring the averages in (3.17) using.(2.30), and .introducing 

(3.17) 

(3.18) 

we can write 

x P(b, t I bo), (3.19) 

where abI/a&(7) is the Jacobian of the deterministic time evolution of the mode 
&(t) and in the linearized system (3.13) is given by 

(-) = e-a*b. (3.20) 

Therefore, assuming time-reversal symmetry in the autocorrection function of the 
prewure-field fluctuations, i.e. Qlr(7) = @I( - 7), introducing the function 

(3.21) 

and assuming t in (3.19) to be very much greater than the correlation time 7c of the 
pressure field fluctuations, we replace the upper limit of the integral by infinity. In 
order to do this we are implicitly assuming that aR > 0, a condition we prove later by 
direct calculation. Thus, restricting our considerations to waves propagating in the 
direction of the wind only (3.19) reduces to 

ka 
P W  

&c[a(k)] = 1; d~ e-ai@)T cos [aI(k) 71 = 7 @,c[k, a(k)], 

to be 

(3.22) 

(3.23) 

(3.24) 

(3.26) 
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which is a Gaussian distribution in the complex mode amplitude 4. It is important 
to  distinguish the use of (3.25) from the quasi-Gaussian approximation that one 
usually encounters in the study of water-wave interactions. The first distinction is 
that (3.26) depends parametrically on the average nonlinear interaction through 
a(k) = AL-h. Thus, when we evaluate the steady-state energy-spectral density 
Ps8(k) using (3.25), i.e. 

pss(k) = a(l&(t)l')ss = lhlaPss(b)dr(b), (3.26) 

we obtain an explicit dependence on the average nonlinear interactions, i.e. 

(3.27) 

For a prescribed spectrum of pressure-field fluctuations 6c from (3.21) and a given 
hk we can then calculate the steady-state energy-spectral density of the gravity- 
capillary field. The second distinction is that the parameter h must be calculated 
self-consistently with the distribution (3.25), i.e. using (3.9) we obtain 

(3.28) 

yielding an expression with 
i.e. 

on both the left- and right-hand sides of the equation, 

h = 2XR<14lS)SS 
I 

= 4 X a&s(l), (3.29) 
1 

since PsS(l) as given by (3.27) depends on I&. The coupling coefficient is discussed 
in appendix B, and involves virtual four-wave interactions induced by the three-wave 
interaction terms as well as the direct four-wave interactions. 

The expressions (3.27) and (3.29) taken together can be interpreted as an asymptotic 
renormalization of the linear eigenvalues produced by the nonlinear wave-wave 
interactions. A more transparent example of this effect is provided in 8 4 to stress the 
physical interpretation of the statistical-linearization approximation. 

4. Interpretation of statistical linearization 
The comparison of the method of statistical linearization with perturbation and 

projection-operator techniques haa been made by West et al. (1978), Budgor & West 
(1978) and West (1980). We present some of that discussion in this section to clarify 
the interpretation of the variational prescription (3.3) in terms of more familiar 
techniques. In  particular, we focus our discussion on the perturbation solution of a 
system of mode-rate equations 

-k -k Y k )  %(t) -k X akl ( t )  %,(t) G(t) = g k ( t ) t  (4.1) 
(k) 

where, although for the purpose of this section it is not necessary to have a physical 
interpretation of (4.1), it might be thought of aa describing the interaction among the 
waves in a narrow band spectrum of gravity waves, but with a complex I?,. We are 
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not interested in obtaining the genera1 perturbation solution to (4.1) here, but rather 
in determining which terms in the perturbation solution correspond to the statistical 
linearization results. First, following West et al. (1978), we note that the statistically 
linearized equation corresponding to (4.1) is 

4(t) + (iwk + Y k  - h) %(t) = & ( t ) 7  (4.2) 

with 

where the brackets denote an average over the self-consistent steady-state distribu- 
tion function, and the {k} on the summation indicates a wave-vector matching condi- 
tion k + k3 = k, + k,. 

We begin the analysis by Fourier-transforming the mode amplitudes a&) in time 
according to m 

&kw = &/-a dt a&) e-iwt, (4.4) 

&rl(W) = rk ~ k 1 ~ 1 a k L s w r ~ 3 w 8 + ~ k ~ ~  (4.5) 

where &,l(o) = Y k + i ( W k - w ) ,  (4.6) 

so that the nonlinear mode-rate equations (4.1) become 

{k, 4 

and the noise spectrum is given by I@kLw12, where 

and for convenience we choose gk to be a zero-centred, delta-correlated Gaussian 
process. The sum in (4.8) is over kl, k,, k3 and wl, o,, w3; there is a four-wave resonance 

(4.8) 
condition given by 

and the summations are replaced by integrals for continuous wavenumbers and 
frequencies. Note that there is no dispersion relation between the frequencies and 
wave vectors in (4.5) or (4.8). 

kl+k, = k3+k, w1+w, = ~ 3 + ~ 7  

Introducing the zeroth-order mode amplitude by 

42 = &dw) @kws (4.9) 

the integral equation that we must solve is 

%w = %! + rk &dw) %lwl a k I y  %swS- * (4.10) 
{k, w) 

For compactness we introduce the composite variable 5 = (k, w )  and define the pro- 
pagator 

4 5 )  = $ 2 ( 5 ) 7  rk (4.11) 

where r can be interpreted as the average scale of r,. The actual value of r need not 
be known for the purposes here, but should be small, i.e. l? 4 1. The parameter r will 
be used aa an expansion parameter in the perturbation series, and for convenience will 
be taken to be real. Equation (4.10) can now be rewritten as 

(4.12) 
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so that introducing the series expansion 

b(5) = 6(0)(5) + &(1)(5) + a(2)(5) + . . . (4.13) 

into (4.12) and equating like orders of I' (am)([) is implicitly O ( P ) )  we obtain the 
hierarchy of equations 

@O)(5) = &(5)0(5), 
a y 5 )  = rsg) I: a ( ~ ) ( ~ ~ ; , )  a0)(f2) a ( 0 ) * ( 5 ~ ,  

{&I 

At each order in the hierarchy given by (4.14) one can insert the amplitudes from the 
preceding order, thereby obtaining expressions solely in terms of the propaga- 
tors S([ ) ,  and the coupling coefficient r. When this is done all, terms in am)(t) are 
explicitly O ( P ) .  Inserting the expressions from (4.14) into (4.12) and writing only 
the terms to 0(F2) yields 

= &')(6) + rs(f) I; @')(fl) a(0)(52z) 
(&I 

+ a(o)(51) a0)(52) rs*(53) I: a(o)*(&) 
(58) +... . (4.15) 

West et al. (1978) have resumed the indicated perturbation expression via the usual 
lengthy and tedious diagrammatic analysis. It was found that when one retains only 
those diagrams that correspond to the so-called 'first Kraichman-Wyld approximation ' 
(see e.g. Morton & Corrsin (1960), who studied the two-degrees-of-freedom Duffing 
oscillator diagrammatically) one obtains 

for the renormalized mode amplitudes as denoted by the r superscript. The function 
& appearing in the denominator of (4.16) is closely related to the normalized mean- 
square mode amplitude, and is given by 

Nk = ~ I : ( l ~ ( ~ ) 1 2 ) ~ ( 2 - ~ k - l ) ;  (4.17) 

it must be determined self-consistently using (4.16). The subscript r on the brackets 
in (4.17) indicates a steady-state ensemble average with respect to the renormalized 
steady-state distribution. The expression (4.16) for ar(5) can be Fourier-inverted to 

(4.18) 
yield 

witah I$ = w k - 2 1 & 9 r k 9  y i  = Yk-2Mkgrk. (4.19) 

1 

d a%(t) + (iwi +?%) %(t) = g k ( t ) ,  
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Now, in (4.3) we have assumed the fluctuations &(t) to be generated by a, zero- 
centred, delta-correlated process, so that from $ 3  we obtain the steady-state proba- 
bility density 

(4.20) 

where @dt) gz’(t-T)> = 2gk6k-k’8(7), ( g k ( t )  g k 4 t - 7 ) )  = O -  (4.21) 

From (4.2) the linearized frequency and dissipation rate are 

@b = @ k - y h ,  yf, = y k - a h k .  (4.22) 

Thus the results (4.19) and (4.20) are identical to those of (4.2) and (4.3), and statistical 
linearization is demonstrated to be equivalent to the partial summation of an infinite 
sequence of perturbation diagrams. Budgor & West (1978) show that the resummation 
is in terms of a ‘linked-cluster expansion’, i.e. from all diagrams that are completely 
linked or connected and are therefore irreducible. The contributors to hk are therefore 
the ‘connected cummulants’ of the expansion. 

Thus the usual quasi-Gaussian approximation that is used in calculations of the 
moments of the gravity-capillary wave field is replaced by an approximation in which 
the connected cummulants at all orders enter into the calculation of the moments. 
In the absence of the nonlinear interactions these higher-order cummulants vanish 
identically in the Gaussian approximation. Therefore statistical linearization is a 
systematic scheme for including the effects of these non-vanishing high-order cum- 
mulants in the linearized dynamic equations. 

5. The transport equation 
The phase-space equation of evolution for the probability density contains the same 

information as the dynamic equations. In particular, the time evolution of the energy- 
spectral density F(k, t )  can be determined either from the linearized dynamic equations 
(3.13), or the Fokker-Planck equation (3.22). To see this, we multiply (3.22) on the 
left by lbkI2 and integrate over all of phase space, recalling that 

since only the probability density depends explicitly on time in phme space. There- 
fore, after an integration of (5.2) by parts, we obtain the transport equation 

a 
at 
-P(k, t )  + 2a,(k) F(k, t )  = 20,. (5.3) 

Aless direct, but somewhat more physical derivation of (5.3) is obtained by considering 
the solution to the linear dynamic equations. 

The solution to (3.13) for the initial condition &(t = 0) = 0 is 

J O  
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and since integration is a lihear process, &(t) has the same statistical properties as 
fk(t). Using the statistical properties of the pressure fluctuations (3.20), the solution 
(5.4) has a zero mean value, i.e. 

The second moment of &t), using (2.20) and the solution (5.4), is given by 

<&t)>f = O* (6.5) 

The integration in (6.6) is handled most expeditiously by considering the time deri- 
vative of the mean-square value of &t). Using the discrete power-8pectral density 
F(k, t ) ,  and taking the time derivative of (6.6), we obtain the inhomogeneous linear 
transport equation 

l d ~ @ ( k , ~ ) c o s [ a I ( k ) ~ ] e x p [ - ~ ( k ) ~ ] .  (6.7) 
a 
at - F(k, t )  + 2 C t ~ ( k )  P(k, t )  = - 

We are here interested primarily in the growth and equilibration of the gravity- 
capillary waves. One might guess, therefore, that the correlation time in the fluctua- 
tions of the air flow at the water surface, i.e. T ~ ,  is very much longer than the charac- 
teristic times of these waves. As argued by Phillips (1967) this might be true at very 
early times over time intervals in which @(k, T )  is essentially constant. During these 
intervals @(k,T) may be removed from the integral (6.7). Using ( 6 4 ,  the initial 
response of the water surface is therefore given by 

In the frame of reference moving with the mean wind velocity, i.e. aI(k) + cc,(k) - k .  W, 
the surface waves in resonance with the’ wind are those with wave vectors such that 

U l ( k ) - Y ( h k )  = k.W, (6.9) 

which is the condition discussed by Phillips when w,(k) is replaced by w, and the non- 
linear terms are neglected, i.e. hk = 0. Since (6.8) is only true initially, i.e. over the 
time interval in which @(k, t )  is constant, we assume a R t  4 1 and expand the expo- 
nential functions using (6.9) to obtain 

@(k, t )  t* rn’ F(k,t) N (6.10) 

which has the quadratic time dependence observed by Phillips (1957). 
If we do not assume that @(k, T )  is frozen in the integral (5.7), but that the correlation 

time between fluctuations is substantially shorter than the integration time, i.e. 
t B T ~ ,  then, introducing the damped cosine transform of the premure fluctuations 
(3.21) into (5.7), we obtain under this short-fetch condition the asymptotic inhomo- 
geneous transport equation 

(5.11) 
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Time 

R a m  1. The growth &B a function of time of the energy-spectral density for the gravity- 
capillary wave normalized to its steady-state level is indicated schematically. (I), Linear growth; 
(11), exponential growth ; (111), transient nonlinear development ; (IV), asymptotic relaxation 
to steady-state $,(k). 

which is precisely the expression provided by the Fokker-Planck equation, (cf. (5.3)). 
To solve (5.11) we must msume a spectral-form value F(k, t.) at a beginning of the 
asymptotic time regime t = t.; then by direct integration of (5.11) we obtain 

Note that the spectral density at the beginning of this time interval decays exponen- 
tially in time. Early in this interval, i.e. for uR(k) 1t-t.l < 1, the exponential in (5.12) 
can be expanded as wm (5.8) to obtain the linear growth in time of the surface wave 
spectrum beyond F(k, ts), i.e. 

(5.13) 

In  figure 1 we show schematically the matching of the solution (5.13) at t = t. to the 
presumed exponential growth of the spectral density F(k, t.). The exponential growth 
of F(k,ts) is compensated by the exponential decay e--taB(k)(t--ta) resulting in a net 
relaxation of this 'initial condition' as determined by the real part of h+. This is the 
quenching of the instability in the Miles-Phillip6 model owing to the average non- 
linear interactions. 

The steady-state power-spectral density predicted by the solution (5.13) is given 
by the t +- 00 value, i.e. 

(5.14) 

m given by (3.27), and depends on the average nonlinear interactions through the 
variational parameter h+ contained in aR(k). Therefore, in determining the relaxation 
rate %(k) we also determine the steady-state level of the gravity-capillary wave 
spectrum. In 3 we found that the parameter hk is in turn evaluated using the steady- 
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state spectral density Fss(k). A self-consistent prescription for the steady-state power- 
spectral density Fss(k) and the average nonlinear interactions in the gravity-capillary 
spectrum & is given by (3.27) and (3.29). 

Our model includes three regions of growth (depicted in figure 1) for the power- 
spectral density of the surface wave field. For early times, region (I) in figure 1, we 
have the linear growth regime of Phillips, with the growth rate proportional to the 
power spectral density of the turbulent fluctuations in the wind field @[k,a’(k)]. 
The prime on a’(k) is used here as a reminder that perturbation theory must be used 
to determine the early-time behaviour of the mode amplitudes. For intermediate 
times, there is some region of exponential growth &s prescribed by the Miles instability 
mechanism. This growth is indicated in region (11) of figure 1. The asymptotic, or 
long-time region, gives the steady-state or saturation spectrum Fss(k) in region (IV) 
of figure 1. The steady-state spectral level is determined by 6,,[k,a(k)], and a{k) 
which depend implicitly on the average nonlinear hydrodynamic interactions through 
the parameter hk which we calculate in Q 6. The connection between regions (11) and 
(IV) in figure 1 is left tenuous because in region (111) the nonlinear interactions are 
developing and their transient behaviour remains undescribed. 

6. Calculation of FEE@) and & 
In  this section we calculate the steady-state energy-spectral density of the gravity- 

capillary waves Fss(k) and the asymptotic relaxation rate of these waves from h,. 
The expressions for these two quantities are 

(6 . la)  

(6.lb) 

In  the continuum limit the discrete steady-state spectrum Fss(k) is replaced by the 
continuum spectrum Yss(k) using 

(6.2) 
% J’ss(k) = p2 y e & ) ,  
(2n) 

and the discrete sum is replaced by an integral over wave vector, 

so that (6.lb) becomes 
& = 4 p 2 1  @Yss(l). 

To evaluate the integral (6.4) we must have a steady-state spectrum for the gravity- 
capillary waves Y(1). The steady-state solution to the transport equation (6.11) is 
given by (6 . la) ,  so we identify the inhomogeneous term in (6.11) with the functional 
form for the observed pressure-fluctuation power-spectral density proposed by Phillips 
(1977, 8 4.2). Although the approximation arguments presented by Phillips applied 
to longer-wavelenp” waves we use dC[k, a(k)] = nlI(k, n) Xo/(2n)2 so that 

(2n)26,,(k, a)/Xo = 20II(b~,)/2nP, (6.5) 
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I 

10 
k-wavenumber (cm-') 

FIGURE 2. The magnitude of the initial growth rates of the gravity-capillary waves as a function 
of frequency (- - - -) for wind speeds of 5 m/s and 10 m/s are contracted with the relaxation 
rates in the asymptotic-time domain (-). 

where n ( W k )  is an experimental spectral density for the pressure fluctuations a8 a 
function of frequency. We use the measurements of Elliott (1972) in the form pre- 
sented in figure 4.2 of Phillips (1977), to write 

where we have used W = 22-5U*, and U, is the wind friction velocity. Using (6.5) 
and (6.6) in (6.1 a) we write the steady-state power-spectral density of the water wave 

1 field (6.2) as 
'Psa(k) = 3.68 x 10-8 - c:) a k 2 ~ z ; i , ,  2aR(k) 

Note that (6.4), with (6.7) as the energy-spectral density for the surface-wave field, 
has the functional form 

W[4 - 41 ' 
which is an integral equation for hk. We solve this equation by first making a guess 
at the functional form of & and then iterating until the value of converges. The 
results of such calculations are shown in figure 2. 
In these calculations we use the value of the air-sea coupling parameter that was 

found to agree quite well with the laboratory experiments of Plant & Wright (1977), 
i.e. 
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Wavenumber 
(cm-1) 

10 
7.67 
6.72 
4-33 
3-28 
2-48 

Frequency Normalized spectrum f4@(f) 
(Hz) W = 600 cm/s W = lo8 cm/s 

46.4 33 316 
31.8 28 276 
22.3 26 264 
16.2 28 265 
12.18 31 299 
9.6 39 369 

TABLE 1. 

where W is the wind speed determined from the wind friction velocity as in ( 6 4 ,  
and V, is the phase speed of the linear surface wave. In  figure 2 we compare the growth 
rate predicted by 

IPkl = 2 1 W k  - vk21 3 (6.10) 

for wind speeds of 10 m/s and 6 m/s with the calculated asymptotic relaxation rates 
for the same wind speeds. 

It is apparent from figure 2 that perturbations of the high-frequency wave spectrum 
relax to the steady state, i.e. are damped out, at a rate which is one to two orders of 
magnitude faster than the initial exponential rate of growth of that portion of the 
spectrum. The nonlinear interactions are therefore very efficient in transferring energy 
out of the perturbed region once the waves have reached their ateady-state levels, i.e., 
efficient in establishing an energy cascade in the steady state. This energy is cascaded 
from longer to shorter waves, where it is viscously damped. As an example of the rate 
of the relaxation consider a 6 mm wavelength wave that has an initial growth rate 
of 6.6 s-l &s given by (6.10) for a 10 m/s wind speed. A perturbation of this wave near 
the steady state, however, relaxes to the steady-atate level at a calculated rate of 
84 s-l, i.e. the perturbation vanishes in approximately one half of a cycle of the wave. 

In  table 1 the calculated spectrum for the gravity-capillary waves is given for six 
frequencies in the interval 10-60Hz. In  this range of frequencies the spectrum 
normalized byf4 seems to be fairly constant for both wind speeds of 6 m/s and 10 m/s. 
However, the level of the spectrum is strongly wind-dependent, as is found in the 
experimenta of Lleonart & Blackman (1980). The dependence calculated here is 
approximately a factor of two stronger than they observed experimentally. The 
experimental slope of the spectrum was determined to bef-3 in this frequency range, 
whereas we calculate it to be f -4, a slope which is observed experimentally at some- 
what higher frequencies. The frequency at which the spectrum changes from a f - 3  

to af-4 frequency dependence is wind-speed dependent, moving to higher frequencies 
for higher wind speeds. 

The major discrepancy is not completely unexpected, since the coupling to the 
longer-wavelength gravity waves becomes an important mechanism for these lower- 
frequency waves. This nonlinear coupling, which has not been included in the present 
model, transfers energy out of this spectral interval as found experimentally by Plant 
& Wright (1977), thereby depleting the energy in the 10Hz and lower frequency 
ranges. This mechanism thus decreases the steepness of the measured slopes of the 
frequency spectrum. A model including this mechanism is presently being studied. 
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7. Discussion and conclusion 
The linear-coupling model of the air-sea interaction developed by Miles (1957, 1960) 

and Phillips (1960) has been generalized to include the average nonlinear interaction 
in the dynamic equations. We have demonstrated by direct integration of these 
dynamic equations that the average nonlinear interactions for gravity-capillary 
waves do indeed quench the instability in the growth of water waves predicted by the 
Miles-Phillips model in this region of the spectrum. The central assumption in the 
present model is the applicability of the statistical-linearization method in the treat- 
ment of the nonlinear interactions in the asymptotic regime. The value of this tech- 
nique in studying nonlinear systems with many degrees of freedom has been discussed 
elsewhere, see e.g. Budgor & West (1978), West et al. (1978) and West (1980). 

The linearized equations provide a simple Langevin model to describe the air-sea 
interaction in which the nonlinear interactions among the water waves provide the 
‘dissipation’ required to establish a steady state in the energy-spectral density. In  
statistical mechanics the Langevin equation is often used to describe systems near 
thermal equilibrium (see e.g. de Groot & Mazur 1969) in which the fluctuations are 
spatially correlated with their relaxation, resulting in a simple fluctuation-dissipation 
relation. In  the water-wave field the energy is tranaported from large (approximately 
10 cm) to small scales by the nonlinear interactions among the fluctuating water 
waves, where it is viscously damped. This energy cascade results in a lack of correlation 
between fluctuations and their relaxation and the consequent lack of a simple fluctua- 
tion-dissipation relation in this case. There is, however, a nonlinear integral relation, 
given by (6.1), relating the energy supplied to the water-wave field at all scales by the 
fluctuating wind field and its subsequent dissipation at the short scales. This relation 
determines the existence of an asymptotic steady state. 

The calculations indicate that perturbations of the short waves relax to their steady- 
state levels one to two orders of magnitude faster than the rate at which they initially 
grow, and unlike their initial growth rates their relaxation rates are fairly insensitive 
to wind speed. The calculated energy-spectral density decreases more rapidly with 
frequency at longer wavelengths than observed experimentally by Lleonard & 
Blackman (1980). This is probably a result of not including the coupling of the gravity- 
capillary waves to the gravity waves; a mechanism that Plant & Wright (1977) find 
very important in their experiments. 

The second key assumption made in the analysis is the statistical properties of the 
pressure-field fluctuations and the form of the power-spectral density of these fluctua- 
tions. These assumptions, although not crucial, were necessary for obtaining a closed- 
form analytic expression for the power-spectral density of the surface waves. 
Approximate treatments for non-Gaussian statistics or long correlation times can 
be developed as generalizations of the present model, but more detailed assumptions 
would require a more extensive data base in the pressure-field fluctuations than 
presently exists. The calculated values of the relaxation rates and the steady-state 
spectral densities are related directly to the experimental information available on 
the pressure-field fluctuations. 

I would like to acknowledge the many fruitful discussions with V. Seshadri and K. 
Lindenberg on many of the techniques applied in this work. 
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Appendix A. Equations of motion 

surface are 
The equations of motion (2.1) expressed in terms of quantities defined on the fluid 

We express the equations of motion (2.1) in terms of quantities defined on the free 
surface x = [(x,t) to avoid the limitations of performing an expansion about z = 0’ 
for high-frequency waves. The restrictions on the x = 0 expansion were pointed out 
by a number of investigators, including Watson & West (1975) and Holliday (1977). 
We therefore present in this appendix the technique developed by Watson & West 
for expanding the vertical velocity (A 2) about the z = [(x, t )  surface, but now applied 
to gravity-capillary waves. 

The method we employ in the analysis of the vertical velocity W in (A 1) is a special 
application of potential theory with Dirichlet boundary conditions used by Watson 
& West (1975). To apply the method we introduce the velocity potential on the 
reference plane z = 0 and define 

do(x, t )  = (0, 2, t)l,=o. (A 3) 

Since specification of the potential on a closed surface defines a unique potential 
problem we assert that the velocity potential at the free surface can be written as a 
Taylor-series expansion about the z = 0 plane : 

The vertical derivatives in (A 4) can be replaced by the operator K using the fact 
that (b(x, z, t )  satisfies Laplace’s equation in the fluid interior, i.e. 

v2(b = 0 + K2(b = -v:(b. (A 5) 

Formally, the operator K replaces 8/82 in Laplace’s equation and has the form given 
in (2.4), K = (-  V:)i, enabling us to replace a vertical-derivative operation with a 
horizontal-derivative operation and to delete reference to the z-co-ordinate altogether. 
The quantity K is defined to operate only on Fourier series such that if an arbitrary 
function f(x) has a Fourier-series expansion 

f (x) = x f k e * k * x ,  

Kf (x) = x kfkeiLax. 

k 
then operating with K yields 

k 
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The velocity potential at the free surface (A 4) can be expressed 
operator O(x, t )  defined by the series expansion 

co 

$s(x,  t )  = I; 4$o(x, t )  = w, t )  $o(x, t ) ,  

0 = - p ( x ,  t )  Kfi, 

n=O 

1 
n - n !  

where 

in terms of the 

and is obt,ained by replacing 8/82 by K in (A 4). In  a similar manner we can write the 
vertical fluid velocity as a Taylor series with an additional vertical derivative: 

00 

W(X, t )  = X Qn $o(x, t )  = Q(x, t )  $O(x, t ) ,  (A 8) 
n=O 

where 

Now to express W in terms of q&, we need only express the intermediary velocity 
potential $o in terms of $s by inverting the operator O(x, t )  in (A 6), i.e. 

t )  = O-'(x, t )  $s(x, t ) ,  
and writ,e (A 8) as 

IV(X, t )  = Q(x ,  t )  O-'(x, t )  $s(x,  t ) .  

The operator O(x, t )  represents the projection of the velocity potential defined on 
the z = 0 reference plane onto the free surface. The inverse operation O-l(x,t)  pro- 
jects the velocity potential from the free surface back into the reference plane. For 
moderate surface deviations the inverse operator O-' can be expressed as a pertur- 
bation series in the surface displacement, i.e. 

O-'(x,t) = 1 - O1(X, t )  - 02(x, t )  + q ( X ,  t)  + Oi(X, t )  

+Ol(x,t)02(x,t)+02(x,t)0,(x,t)+... . (A 12) 

The vertical velocity (A 11) can then be written 

W = Qo$s + (Qi - Qo 01) $8 + ( Q 2 -  Qioi - Qo 03 $s 

- ( Q 2 9 1 + & 1 0 2 - Q 1 0 2 1 - Q 0 0 1 1 0 2 - & 1 f / 2 0 1 ) $ ~ + . . . ,  (A 13) 

to third order in the vertical surface displacement. A general series expression of terms 
of 0, and Q, can be written for the vertical velocity, but this is not of interest to us 
here. Direct subst,itution of the defining equations (A 7) and (A 9) into (A 13) yields 
the vertical velocity 

w = K$s - [K(CK$s) - &'$s] + K[&(&$s)] - 6[K2(&$s)] - *[K(g2K2$s) - 62K3#s] + - - - 
(A 14) 

The perturbative equations of motion at the free surface are, to third order, 

+ K[CK(&$s)I - a [ 2 ~ 2 $ ~  - &'(&$s) + 4[2~3$s + . . . . (A 15b) 

The nonlinear terms in (A 15a, b )  give rise to the nonlinear functions F6 and Fc, 
respect,ively . 
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Appendix B. Interaction coefficients 
The second-order interaction coefficients in (2.16) are given by 

iV 
C:, = r:,-Qip,[(lk-l.k)%+ (mk-m.k)Vm]+-[Z%Ym+mWJ, (B la) 

4% 

iV 
P = rum + &ipk [(kZ 4- k .I)'%$* + (km + k .  m) V:] -- [mZ2V2 + ZTTZ'%*], (B 1 C) 

4% 

where the form of the rs are given in Watson & West (1975) aa 

(Zm + I .  m) -+'@ -1. k) -Vm(mk - m . k) . rh = A [V" s x  (B 2 4  1 
.Icr v2 (Zm - 1. rn) + %(Zk - 1. k) - %* (mk + m . k) (B 2b) 1 rp = -[L 

f k  

(B 2c) 

We note that Vk is the ' complex velocity' obtained from (2.13) to be 

"k = [ V % - O L k ~ - V k ) 2 ] 9 + i C U k ~ - v k ) y  (B 3) 

where V, ( = (g/k + yk)a) is the phase velocity of the linear wave. 
The direct contribution of the quadratic interactions to  the steady-state value of 

the wave energy-spectral density through hk vanishes owing to the resonant restric- 
tions on wave vectors. Here we modify the third-order interaction coefficients 88 was 
done in Watson t West (1975) to include these quadratic effects in a perturbative 
manner, i.e. 

q m , q y . a  + cL,,I-acf-a'a* -- 1 q n - m q - m -  -- 1 Omn-*Q-lJ 

Ck.a Cl+m @a. -(l+m) C-(l+m), 1. m* 
+ $ 2  Y (B4)  I+m 1.m 

1+m -Am - 4 AT+m - Am - 4 
where 

nVn[(l-nl+Im-nl-k-n]+ZV@+Z-Il-nl-Ik+nl] 

Zm %Vm 
+mVm[k+m-Im-nl-Ik+nl]-- -[Z+m-Il-nl -Im-nl] 

.Icrk 

(B 5 )  
We have neglected the direct dependence of the third-order coupling coefficient on 
y and v, and an error in the third-order coefficients rk in Watson t West (1975) has 
been corrected. The second-order terms (three-wave interactions) generat,e four-ware 
interactions in (B 4) and modify t.he coupling strength. 
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